EconPapers    
Economics at your fingertips  
 

On the number of limit cycles bifurcated from some Hamiltonian systems with a non-elementary heteroclinic loop

Pegah Moghimi, Rasoul Asheghi and Rasool Kazemi

Chaos, Solitons & Fractals, 2018, vol. 113, issue C, 345-355

Abstract: In this paper, we study the bifurcation of limit cycles in two special near-Hamiltonian polynomial planer systems which their corresponding Hamiltonian systems have a heteroclinic loop connecting a hyperbolic saddle and a cusp of order two. In these systems, we will compute the asymptotic expansions of corresponding first order Melnikov functions near the loop and the center to analyze the number of limit cycles. Moreover, in the first system, by using the Chebychev criterion, we study the Poincaré bifurcation.

Keywords: Limit cycle; Bifurcation; Hamiltonian system; Melnikov function; Asymptotic expansion (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918303114
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:113:y:2018:i:c:p:345-355

DOI: 10.1016/j.chaos.2018.05.023

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:113:y:2018:i:c:p:345-355