Dynamics of the Higgins–Selkov and Selkov systems
Joan Carles Artés,
Jaume Llibre and
Claudià Valls
Chaos, Solitons & Fractals, 2018, vol. 114, issue C, 145-150
Abstract:
We describe the global dynamics in the Poincaré disc of the Higgins–Selkov model x′=k0−k1xy2,y′=−k2y+k1xy2,where k0, k1, k2 are positive parameters, and of the Selkov model x′=−x+ay+x2y,y′=b−ay−x2y,where a, b are positive parameters. We determine the regions of initial conditions with biological meaning.
Keywords: Selkov system; Higgins–Selkov system; Phase portrait; Poincaré compactification (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918305666
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:114:y:2018:i:c:p:145-150
DOI: 10.1016/j.chaos.2018.07.007
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().