EconPapers    
Economics at your fingertips  
 

Dynamical transitions of a low-dimensional model for Rayleigh–Bénard convection under a vertical magnetic field

Daozhi Han, Marco Hernandez and Quan Wang

Chaos, Solitons & Fractals, 2018, vol. 114, issue C, 370-380

Abstract: In this article, we study the dynamic transitions of a low-dimensional dynamical system for the Rayleigh–Bénard convection subject to a vertically applied magnetic field. Our analysis follows the dynamical phase transition theory for dissipative dynamical systems based on the principle of exchange of stability and the center manifold reduction. We find that, as the Rayleigh number increases, the system undergoes two successive transitions: the first one is a well-known pitchfork bifurcation, whereas the second one is structurally more complex and can be of different type depending on the system parameters. More precisely, for large magnetic field, the second transition is of continuous type and gives to a stable limit cycle; on the other hand, for low magnetic field or small height-to-width aspect ratio, a jump transition occurs where an unstable periodic orbit eventually collides with the stable steady state, leading to the loss of stability at the critical Rayleigh number. Finally, numerical results are presented to corroborate the analytic predictions.

Keywords: Dynamical transitions; Bifurcation; Rayleigh–Bénard convection; Centre manifold reduction; Dynamical system (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918303333
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:114:y:2018:i:c:p:370-380

DOI: 10.1016/j.chaos.2018.06.027

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:114:y:2018:i:c:p:370-380