EconPapers    
Economics at your fingertips  
 

Binet type formula for Tribonacci sequence with arbitrary initial numbers

Tanackov Ilija

Chaos, Solitons & Fractals, 2018, vol. 114, issue C, 63-68

Abstract: This paper presents detailed procedure for determining the formula for calculation Tribonacci sequence numbers with arbitrary initial numbers Ta,b,c,(n). Initial solution is based on the concept of damped oscillations of Lucas type series with initial numbers T3,1,3(n). Afterwards coefficient θ3 has been determined which reduces Lucas type Tribonacci series to Tribonacci sequence T0,0,1(n). Determined relation had to be corrected with a phase shift ω3. With known relations of unitary series T0,0,1(n) with remaining two equations of Tribonacci series sequence T1,0,0(n) and T0,1,0(n), Binet type equation of Tribonacci sequence that has initial numbers Ta,b,c(n) is obtained.

Keywords: Fibonacci; Damped oscillations; Quatronacci (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918304417
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:114:y:2018:i:c:p:63-68

DOI: 10.1016/j.chaos.2018.06.023

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:114:y:2018:i:c:p:63-68