Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria
Jay Prakash Singh and
Binoy Krishna Roy
Chaos, Solitons & Fractals, 2018, vol. 114, issue C, 81-91
Abstract:
Very little research is available in the field of 4-D autonomous conservative chaotic systems. This paper presents five new 4-D autonomous conservative chaotic systems having non-hyperbolic equilibria with various characteristics. The proposed systems have different numbers of non-hyperbolic equilibrium points. One of the new systems has four non-hyperbolic equilibria points along with lines of equilibria. Hence, this system may belong to the category of hidden attractors chaotic system. The first, second, fourth and fifth type of the systems exhibit coexistence of chaotic flow, whereas the third type of the system exhibits coexistence of chaotic flows with quasi-periodic behaviour. The chaotic behaviours of the proposed systems are verified by using phase portrait plot, Poincaré map, local Lyapunov spectrum, bifurcation diagram and frequency spectrum plots. The conservative nature of the proposed systems is proved by finding the sum of finite-time local Lyapunov exponents, finite-time local Lyapunov dimensions and divergence of the vector field. The sum of the finite-time local Lyapunov exponents and divergence of the vector field are equal to zero, and local Lyapunov dimension is equal to the order of the system confirm the conservative nature of the new chaotic systems.
Keywords: Conservative chaotic system; Lines of equilibria, new chaotic system; Non-hyperbolic equilibria; Coexistence of chaotic flows; Hidden attractors (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918305289
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:114:y:2018:i:c:p:81-91
DOI: 10.1016/j.chaos.2018.07.001
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().