Laplacian spectrum and coherence analysis of weighted hypercube network
Meifeng Dai,
Jiaojiao He,
Yue Zong,
Tingting Ju,
Yu Sun and
Weiyi Su
Chaos, Solitons & Fractals, 2018, vol. 115, issue C, 29-34
Abstract:
Hypercube network is one of the most important and attractive network topologies so far. In this paper, we consider the scaling for first- and second-order network coherence on the hypercube network controlled by a weight factor. Our objective is to quantify the robustness of algorithms to stochastic disturbances at the nodes by using a quantity called network coherence which can be characterized as Laplacian spectrum. Network coherence can capture how well a network maintains its formation in the face of stochastic external disturbances. Firstly, we deduce the recursive relationships of its eigenvalues at two successive generations of Laplacian matrix. Then, we obtain the Laplacian spectrum of Laplacian matrix. Finally, we calculate the first- and second-order network coherence quantified as the sum and square sum of reciprocals of all nonzero Laplacian eigenvalues by using Squeeze Theorem. The obtained results show that the network coherence depends on generation number and weight factor. Meanwhile, the scalings of the first- and second-order network coherence of weighted hypercube decrease with the increasing of weight factor r, when 0 < r < 1.
Keywords: Weighted hypercube network; Characteristic polynomial; Laplacian spectrum; Network coherence; Robustness (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918308324
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:115:y:2018:i:c:p:29-34
DOI: 10.1016/j.chaos.2018.08.012
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().