EconPapers    
Economics at your fingertips  
 

An approach to improve the performance of fractional-order sinusoidal oscillators

Shalabh Kumar Mishra, Dharmendra Kumar Upadhyay and Maneesha Gupta

Chaos, Solitons & Fractals, 2018, vol. 116, issue C, 126-135

Abstract: This paper presents a simple technique to approximate fractance devices (FDs) capable of improving the performance of any fractional-order oscillator. The proposed technique is based on an elementary mathematical tool of impedance equalization, and requires significantly lesser number of passive components than the existing FD approximation schemes. To compare the merit of approximated FDs with the existing R-C ladder based FDs, a well-known fractional-order Wien-bridge oscillator is realized using both FDs one by one; and the corresponding results are compared exhaustively. It is observed that the fractional-order oscillator realized using the proposed FDs gives better performance in terms of phase-noise, figure of merit (FoM), total harmonic distortion (THD), settling time, peak-to-peak voltage, power dissipation, and hardware compactness. Authenticity and accuracy of the proposed design has been verified using PSpice simulation and practical implementation.

Keywords: Fractance device; Phase noise; THD; Figure of merit; Riemann surface (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918309809
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:116:y:2018:i:c:p:126-135

DOI: 10.1016/j.chaos.2018.09.015

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:116:y:2018:i:c:p:126-135