A gentle introduction to anisotropic banach spaces
Mark F. Demers
Chaos, Solitons & Fractals, 2018, vol. 116, issue C, 29-42
Abstract:
The use of anisotropic Banach spaces has provided a wealth of new results in the study of hyperbolic dynamical systems in recent years, yet their application to specific systems is often technical and difficult to access. The purpose of this note is to provide an introduction to the use of these spaces in the study of hyperbolic maps and to highlight the important elements and how they work together. This is done via a concrete example of a family of dissipative Baker’s transformations. Along the way, we prove an original result connecting such transformations with expanding maps via a continuous family of transfer operators acting on a single Banach space.
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918309305
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:116:y:2018:i:c:p:29-42
DOI: 10.1016/j.chaos.2018.08.028
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().