A new mathematical formulation for a phase change problem with a memory flux
Sabrina D. Roscani,
Julieta Bollati and
Domingo A. Tarzia
Chaos, Solitons & Fractals, 2018, vol. 116, issue C, 340-347
Abstract:
A mathematical formulation for a one-phase change problem in a form of Stefan problem with a memory flux is obtained. The hypothesis that the integral of weighted backward fluxes is proportional to the gradient of the temperature is considered. The model that arises involves fractional derivatives with respect to time both in the sense of Caputo and of Riemann–Liouville. An integral relation for the free boundary, which is equivalent to the “fractional Stefan condition”, is also obtained.
Keywords: Stefan problem; Fractional diffusion equation; Riemann–Liouville derivative; Caputo derivative; Memory flux; Equivalent integral relation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007791830393X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:116:y:2018:i:c:p:340-347
DOI: 10.1016/j.chaos.2018.09.023
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().