EconPapers    
Economics at your fingertips  
 

On the solution of time-fractional KdV–Burgers equation using Petrov–Galerkin method for propagation of long wave in shallow water

A.K. Gupta and S. Saha Ray

Chaos, Solitons & Fractals, 2018, vol. 116, issue C, 376-380

Abstract: In the present article, Petrov–Galerkin method has been utilized for the numerical solution of nonlinear time-fractional KdV–Burgers (KdVB) equation. The nonlinear KdV–Burgers equation has been solved numerically through the Petrov–Galerkin approach utilising a quintic B-spline function as the trial function and a linear hat function as the test function . The numerical outcomes are observed in good agreement with exact solutions for classical order. In case of fractional order, the numerical results of KdV–Burgers equations are compared with those obtained by new method proposed in [1]. Numerical experiments exhibit the accuracy and efficiency of the approach in order to solve nonlinear dispersive and dissipative problems like the time-fractional KdV–Burgers equation.

Keywords: 26A33; 35G25; 35R11; 35Q35; 42C40 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918308531
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:116:y:2018:i:c:p:376-380

DOI: 10.1016/j.chaos.2018.09.046

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:116:y:2018:i:c:p:376-380