EconPapers    
Economics at your fingertips  
 

M-fractional derivative under interval uncertainty: Theory, properties and applications

S. Salahshour, A. Ahmadian, S. Abbasbandy and D. Baleanu

Chaos, Solitons & Fractals, 2018, vol. 117, issue C, 84-93

Abstract: In the recent years some efforts were made to propose simple and well-behaved fractional derivatives that inherit the classical properties from the first order derivative. In this regards, the truncated M-fractional derivative for α-differentiable function was recently introduced that is a generalization of four fractional derivatives presented in the literature and has their important features. In this research, we aim to generalize this novel and effective derivative under interval uncertainty. The concept of interval truncated M-fractional derivative is introduced and some of the distinguished properties of this interesting fractional derivative such as Rolle’s and mean value theorems, are developed for the interval functions. In addition, the existence and uniqueness conditions of the solution for the interval fractional differential equations (IFDEs) based on this new derivative are also investigated. Finally, we present the applicability of this novel interval fractional derivative for IFDEs based on the notion of w-increasing (w-decreasing) by solving a number of test problems.

Keywords: M-fractional derivative; Interval arithmetic; Interval-valued function; Generalized Hukuhara differentiability; Truncated Mittag-Leffler function (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918309998
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:117:y:2018:i:c:p:84-93

DOI: 10.1016/j.chaos.2018.10.002

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:117:y:2018:i:c:p:84-93