EconPapers    
Economics at your fingertips  
 

Analysis of bifurcation, chaos and pattern formation in a discrete time and space Gierer Meinhardt system

Jinliang Wang, You Li, Shihong Zhong and Xiaojie Hou

Chaos, Solitons & Fractals, 2019, vol. 118, issue C, 1-17

Abstract: This paper is concerned with the spatiotemporal behaviors of a Gierer–Meinhardt system in discrete time and space form. Through the linear stability analysis, the parametric conditions are gained to ensure the stability of the homogeneous steady state of the system. Based on the bifurcation theory, as well as center manifold theorem, we derive the critical parameter values of the flip, Neimark–Sacker and Turing bifurcation respectively. Besides, the specific parameter expression to form patterns are also determined. In order to identify chaos among regular behaviors, we calculate the Maximum Lyapunov exponents. The results obtained in this paper are illustrated by numerical simulations. From the simulations, we can see some complex dynamics, such as period doubling cascade, invariant cycles, periodic windows, chaotic behaviors, and some striking Turing patterns, e.g. circle, mosaic, spiral, spatiotemporal chaotic patterns and so on, which can be produced by flip-Turing instability, Neimark–Sacker–Turing instability and chaos.

Keywords: Space and time discretization; Neimark–Sacker bifurcation; Flip bifurcation; Chaos; Turing instability; Pattern (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918305733
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:118:y:2019:i:c:p:1-17

DOI: 10.1016/j.chaos.2018.11.013

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:118:y:2019:i:c:p:1-17