Multi-stage classification of congestive heart failure based on short-term heart rate variability
Yalcin Isler,
Ali Narin,
Mahmut Ozer and
Matjaž Perc
Chaos, Solitons & Fractals, 2019, vol. 118, issue C, 145-151
Abstract:
In this study, we propose an automatic system to diagnose congestive heart failure using short-term heart rate variability analysis. The system involves a multi-stage classifier. The features of heart rate variability are computed from time-domain and frequency-domain measures through power spectral density estimations of different transform methods. Nonlinear heart rate variability measures are also calculated by using Poincare plot, symbolic dynamics, detrended fluctuation analysis, and sample entropy. Different combinations of heart rate variability features are selected according to their statistical significance levels and then applied to the classifier. The first two stages of the classifier consist of simple perceptron classifiers that are trained by a genetic algorithm. Five different classifiers, namely k-nearest neighbors, linear discriminant analyses, multilayer perceptron, support vector machines, and radial basis function artificial neuronal network, are tested for the third stage. The proposed system results in a classification performance of an accuracy of 98.8%, specificity of 98.1%, and sensitivity of 100%. We show that our approach provides an effective and computationally efficient tool to automatically diagnose congestive heart failure patients.
Keywords: Frequency-domain measure; Nonlinear variability; Heart rate variability; Congestive heart failure; Multi-stage classifier; Genetic algorithm (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918310257
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:118:y:2019:i:c:p:145-151
DOI: 10.1016/j.chaos.2018.11.020
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().