Stability and Hopf bifurcation analysis of a TCP/RAQM network with ISMC procedure
Ladan Khoshnevisan,
Xinzhi Liu and
Farzad R. Salmasi
Chaos, Solitons & Fractals, 2019, vol. 118, issue C, 255-273
Abstract:
Transmission control protocol (TCP), which is usually implemented in the transport layer of a communication network, can detect the congestion after its occurrence. But congestion control can be more complicated in networks with wireless access links due to time-varying fading and packet error rate (PER). Thus, it is essential to use robust active queue management (RAQM) to prevent congestion with certain tolerance against serious disturbance of the wireless environment. As the stability of a TCP/RAQM is tremendously related to the transmission delay, this paper focuses on Hopf bifurcation analysis of a network governed by nonlinear delayed differential equations and an integral sliding mode control as a nonlinear RAQM. The transmission delay is assumed as the bifurcation parameter. It is shown that if the delay passes through a critical value, the closed loop system would not remain stable and the Hopf bifurcation occurs. Moreover, based on the normal form theory and the center manifold theorem, the direction and the stability of the bifurcation periodic solutions are determined. Finally, simulation results are given to confirm the analytical achievements and to show the effectiveness of the procedure compared to some recent protocols.
Keywords: Hopf bifurcation; Integral sliding mode control; Congestion control; Stability; Nonlinear dynamics; Wireless access networks (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918304211
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:118:y:2019:i:c:p:255-273
DOI: 10.1016/j.chaos.2018.11.029
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().