EconPapers    
Economics at your fingertips  
 

A multi-scroll chaotic system for a higher coverage path planning of a mobile robot using flatness controller

Salah Nasr, Hassen Mekki and Kais Bouallegue

Chaos, Solitons & Fractals, 2019, vol. 118, issue C, 366-375

Abstract: In this paper, we present a study of higher-coverage path planning desired for mobile robots for some special tasks using a flatness controller based on the dynamic features of a multi-scroll chaotic system. The trajectory construction is envisaged for field exploration missions or for the specific purpose of research where fast scanning of a complete workplace of the robot is required. For these types of applications or missions, researchers have opted for using a chaotic trajectory. The chaotic systems that are often used are: the Lorenz system, the Standard-map system, the Arnold system, etc. The problem for this type of chaotic systems is the density of these orbits that appear in the robot trajectory, which begets a loss of energy and time. For that, we propose a multi-scroll chaotic system to avoid the redundancy of orbits. At the boundary conditions, in order not to leave the workspace, a mirror mapping method is utilized, which constrains all the mobile robot positions in the workspace and which can reflect all the overflow waypoints returning to it. The major problem of this type of chaotic trajectory is how to determine the control law which makes it possible to guarantee the system commendability. However, a flatness controller, which shows great advantages providing an integrated structure for planning and control, is utilized to ensure the commendability of the chaotic robot. Compared to simply using the double-scroll chaotic systems in the whole workspace, the suggested new multi-scroll chaotic system, combined with the mirror mapping method, shows good results that can achieve a higher coverage for a larger workplace of the mobile robot.

Keywords: Coverage path planning; Mobile robot; Chaotic systems; Multi-scroll Chua system; Bounded workspace; Flatness controller (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918304600
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:118:y:2019:i:c:p:366-375

DOI: 10.1016/j.chaos.2018.12.002

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:118:y:2019:i:c:p:366-375