A true random bit generator based on a memristive chaotic circuit: Analysis, design and FPGA implementation
Barış Karakaya,
Arif Gülten and
Mattia Frasca
Chaos, Solitons & Fractals, 2019, vol. 119, issue C, 143-149
Abstract:
The aim of this paper is to present a true random bit generator (TRBG) based on a memristive chaotic circuit and its implementation on Field Programmable Gate Array (FPGA) board. The proposed TRBG architecture makes use of a memristive canonical Chua's oscillator and a logistic map as entropy sources, while the XOR function is used for post-processing. The optimal parameter set for the chaotic systems has been chosen by carrying out numerical simulations of the system and adopting the scale index parameter to determine the degree of non-periodicity of the obtained bit streams. The proposed TRBG system has been then modeled and co-simulated on the Xilinx System Generator (XSG) platform and implemented on the Xilinx Kintex-7 KC705 FPGA Evaluation Board, obtaining experimental results in agreement with the expectations. Finally, the system has been validated with statistical analysis by using the NIST 800.22 statistical test suite.
Keywords: Chaos; True random bit generator; Chua's oscillator; FPGA; Memristor; Logistic map (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918310518
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:119:y:2019:i:c:p:143-149
DOI: 10.1016/j.chaos.2018.12.021
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().