EconPapers    
Economics at your fingertips  
 

Stochastic variability and transitions to chaos in a hierarchical three-species population model

Irina Bashkirtseva, Lev Ryashko and Tatyana Ryazanova

Chaos, Solitons & Fractals, 2019, vol. 119, issue C, 276-283

Abstract: A variability of the dynamic behavior in stochastically forced multi-species population models is studied. We address how noise can generate complex oscillatory regimes with transitions between attractors and order-chaos transformations. For the parametric analysis of noise-induced transitions, we utilize a semi-analytical technique based on the stochastic sensitivity analysis of attractors and confidence domains method. This approach is used in the study of the fairly realistic three-species population model describing the interaction of prey, predator and top predator. We consider in detail the parametric zone where the system is monostable with excitable limit cycle, or bistable with coexisting limit cycle and chaotic attractor. These zones are separated by the crisis bifurcation point. Noise-induced transitions between regular and chaotic attractors in the bistability zone are analysed by the confidence ellipses method. In the monostability zone, a mechanism of the transition from regular periodic to multimodal chaotic oscillations is studied.

Keywords: Population dynamics; Noise-induced transitions; Stochastic sensitivity; Chaos (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077919300128
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:119:y:2019:i:c:p:276-283

DOI: 10.1016/j.chaos.2018.12.035

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:119:y:2019:i:c:p:276-283