Improved numerical solution of multi-asset option pricing problem: A localized RBF-FD approach
Fazlollah Soleymani and
Ali Akgül
Chaos, Solitons & Fractals, 2019, vol. 119, issue C, 298-309
Abstract:
The objective of this work is to present a novel procedure for tackling European multi-asset option problems, which are modeled mathematically in terms of time-dependent parabolic partial differential equations with variable coefficients. To use as low as possible of number computational grid points, a non-uniform grid is generated while a radial basis function-finite difference scheme with the Gaussian function is applied on such a grid to discretize the model as efficiently as possible. To reduce the burdensome for tackling the resulting set of ordinary differential equations, a Krylov method, which is due to the application of exponential matrix function on a vector, is taken into account. The combination of these techniques reduces the computational effort and the elapsed time. Several experiments are brought froward to illustrate the superiority of the new improved approach. In fact, the contributed procedure is capable to tackle even 6D PDEs on a normally-equipped computer quickly and efficiently.
Keywords: RBF-FD method; Gaussian RBF; Option pricing; Exponential integrator; Krylov method (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918307446
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:119:y:2019:i:c:p:298-309
DOI: 10.1016/j.chaos.2019.01.003
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().