Minimal digital chaotic system
Erivelton G. Nepomuceno,
Arthur M. Lima,
Janier Arias-García,
Matjaž Perc and
Robert Repnik
Chaos, Solitons & Fractals, 2019, vol. 120, issue C, 62-66
Abstract:
Over the past few decades, many works have been devoted to designing simple chaotic systems based on analog electronic circuits. However, the same attention is not observed in digital chaotic systems. This paper presents a design of a digital chaotic system using a digit complement. This special case of fixed-point number representation allows us to reduce the silicon area and the number of logic elements to perform the arithmetic operations. The design presents a configurable number of bits, and it is based on the logistic map. The proposed circuit has been implemented on a reconfigurable hardware, FPGA Cyclone V, showing that the number of logic elements has been significantly reduced compared to other works in the literature.
Keywords: Chaos; Nonlinear dynamics; FPGA synthesis; Computer arithmetic; Digital system (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077919300219
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:120:y:2019:i:c:p:62-66
DOI: 10.1016/j.chaos.2019.01.019
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().