EconPapers    
Economics at your fingertips  
 

The NLS(n, n) equation: Multi-hump compactons and their stability and interaction scenarios

Zhenya Yan

Chaos, Solitons & Fractals, 2019, vol. 122, issue C, 25-31

Abstract: The nonlinear Schrödinger (NLS) equation with fully nonlinear dispersion (called NLS(m, n) equation) has been introduced by Yan [Phys. Lett. A 355 (2006) 212] and shown to possess the single-hump compactons for m=n>1. In this paper, we further investigated the focusing NLS(n, n) equation and find that it possesses the multi-hump compactons for n > 1, whose properties are analyzed in detail. Particularly, we surprisedly find that the maximal intensities of the multi-hump compactons approach to the natural base e as n→1+. Moreover, we numerically study the stabilities and interactions of the single-hump and double-hump compactons such that some stable multi-hump compactons and elastic interactions are found for some small values of the parameter n. These multi-hump compactons will be useful for understanding the soliton-like solutions and applying them in the related fields of nonlinear science.

Keywords: Nonlinear dispersion; NLS(n, n) equation; Multi-hump compactons; Soliton-like solutions; Stability; Interactions (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077919300700
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:122:y:2019:i:c:p:25-31

DOI: 10.1016/j.chaos.2019.03.008

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:122:y:2019:i:c:p:25-31