Unstable discrete modes in Hindmarsh–Rose neural networks under magnetic flow effect
C.B. Tabi,
A.S. Etémé,
A. Mohamadou and
T.C. Kofané
Chaos, Solitons & Fractals, 2019, vol. 123, issue C, 116-123
Abstract:
The competitive effect between electric and magnetic flux couplings is used, in the context of modulational instability, to describe the collective dynamics in a modified Hindmarsh–Rose neural networks. The multiple-scale expansion is utilized to reduce the system to a nonlinear differential-difference equation, whose plane wave solutions are found to be unstable for some values of parameters. Particular interest is given to the influence of changing both the electric and magnetic coupling strengths, and confirmation of analytical results is given via numerical integration of the generic Hindmarsh–Rose model. The model presents a rich variety of spatiotemporal patterns propagating in the network, as the result of the interplay between nonlinear and dispersive effects. The electromagnetic induction appears to be responsible for regular bursting patterns and synchronous states in the network. With increasing the electric coupling, full synchronization is difficult to realize and irregular spatiotemporal patterns of action potentials are predominant.
Keywords: Neural networks; Action potentials; Modulational instability; Magnetic field (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918306015
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:123:y:2019:i:c:p:116-123
DOI: 10.1016/j.chaos.2019.03.028
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().