Fundamental results on weighted Caputo–Fabrizio fractional derivative
Mohammed Al-Refai and
Abdulla M. Jarrah
Chaos, Solitons & Fractals, 2019, vol. 126, issue C, 7-11
Abstract:
In this paper, we define the weighted Caputo–Fabrizio fractional derivative of Caputo sense, and study related linear and nonlinear fractional differential equations. The solution of the linear fractional differential equation is obtained in a closed form, and has been used to define the weighted Caputo–Fabrizio fractional integral. We study main properties of the weighted Caputo–Fabrizio fractional derivative and integral. We also, apply the Banach fixed point theorem to establish the existence of a unique solution to the nonlinear fractional differential equation. Two examples are presented to illustrate the efficiency of the obtained results.
Keywords: Weighted fractional derivatives; Caputo–Fabrizio fractional derivative; Fractional differential equations (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077919302000
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:126:y:2019:i:c:p:7-11
DOI: 10.1016/j.chaos.2019.05.035
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().