EconPapers    
Economics at your fingertips  
 

Fundamental results on weighted Caputo–Fabrizio fractional derivative

Mohammed Al-Refai and Abdulla M. Jarrah

Chaos, Solitons & Fractals, 2019, vol. 126, issue C, 7-11

Abstract: In this paper, we define the weighted Caputo–Fabrizio fractional derivative of Caputo sense, and study related linear and nonlinear fractional differential equations. The solution of the linear fractional differential equation is obtained in a closed form, and has been used to define the weighted Caputo–Fabrizio fractional integral. We study main properties of the weighted Caputo–Fabrizio fractional derivative and integral. We also, apply the Banach fixed point theorem to establish the existence of a unique solution to the nonlinear fractional differential equation. Two examples are presented to illustrate the efficiency of the obtained results.

Keywords: Weighted fractional derivatives; Caputo–Fabrizio fractional derivative; Fractional differential equations (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077919302000
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:126:y:2019:i:c:p:7-11

DOI: 10.1016/j.chaos.2019.05.035

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:126:y:2019:i:c:p:7-11