Random walk and broad distributions on fractal curves
Seema Satin and
A.D. Gangal
Chaos, Solitons & Fractals, 2019, vol. 127, issue C, 17-23
Abstract:
A first principles approach is developed in this article to address basic mathematical structure of random walks with exact results for a stochastic analysis on a fractal curve. We present this analysis using a recently developed calculus for a fractal geometry. Restricting to unbiased random walk on a fractal curve, we find out the corresponding probability distribution which is gaussian like in nature, but shows deviation from the standard behaviour. Moments are calculated in terms of Euclidean distance for a von Koch curve. We also include analysis on Levy distributions for the same fractal structure and demonstrate that the dimension of the fractal curve shows significant contribution to the distribution law by modifying the nature of moments. Towards the end of the article, the first passage time for random walks on the fractal is presented. The appendix gives a short note on Fourier transform for fractal curves and a very brief introduction to the Fα-calculus.
Keywords: Fractal curve; Random walk; Probability distributions; First passage time (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077919302310
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:127:y:2019:i:c:p:17-23
DOI: 10.1016/j.chaos.2019.06.019
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().