Fractal analysis of shallow and intermediate-depth seismicity of Hindu Kush
Umar Hayat,
Adnan Barkat,
Aamir Ali,
Khaista Rehman,
Shazia Sifat and
Talat Iqbal
Chaos, Solitons & Fractals, 2019, vol. 128, issue C, 71-82
Abstract:
Statistical seismology helps in understanding the underlying seismicity properties using some well-known scaling relations that characterize different aspects of earthquake distribution. Among these scaling relations the Hurst (H) exponent has been extensively used to demonstrate the fractal properties of earthquake activity. In this study, we investigate the long-range correlations of seismicity parameters of shallow and intermediate-depth earthquakes of the Hindu Kush region using H statistics. The H index is computed for time window of 200 events with a slide of 15 data points on a complete and de-clustered catalog (1960–2007) prepared by Rehman et al. (2017). The long-range characteristics of seismicity are explored using size, time, space, depth and energy release. For shallow seismicity, the persistency (0.5 ≤ H ≤ 1) is found to be dominant except in a few periods of random walk. Contrary to this, intermediate-depth events show an evident change in H index around the time of major seismic events. Furthermore, the comparison of fractal behaviour of shallow and intermediate-depth seismicity confirms a notable difference in statistical properties. Our results also serve as a baseline study for seismicity analysis using multi-fractal approach for this region.
Keywords: Earthquake; Hurst exponent; R/S analysis; Seismicity; Hindu Kush (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077919302814
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:128:y:2019:i:c:p:71-82
DOI: 10.1016/j.chaos.2019.07.029
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().