Orbital stability and homoclinic bifurcation in a parametrized deformable double-well potential
M.F. Kepnang Pebeu,
Frank T. Ndjomatchoua,
T.L.M. Djomo Mbong,
Carlos L. Gninzanlong,
C.B. Tabi and
T.C. Kofane
Chaos, Solitons & Fractals, 2020, vol. 130, issue C
Abstract:
The motion of a particle in a one-dimensional deformable double-well potential is studied. In a case study related deformable potential that permits theoretical adaptation of the model to various physical situations, the existence and the stability of periodic motion as well as the routes toward chaos upon the potential parameter are investigated. It is demonstrated that the shape of the potential is crucial in controlling the orbital stability of the system. The occurrence of chaotic motions is found to be quite sensitive to the shape parameter of the potential. These instability and chaotic behaviors result from a delicate balance between the damping, the periodic force and the total nonlinearity induced by the variable shape potential.
Keywords: Orbital stability; Homoclinic bifurcation; Deformable potential (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077919303522
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:130:y:2020:i:c:s0960077919303522
DOI: 10.1016/j.chaos.2019.109411
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().