Comparing spatio-temporal networks of intermittent avalanche events: Experiment, model, and empirical data
Dionessa C. Biton,
Anjali B. Tarun and
Rene C. Batac
Chaos, Solitons & Fractals, 2020, vol. 130, issue C
Abstract:
Relaxational processes in many complex systems often occur in the form of avalanches resulting from internal cascades from across the system scale. Here, we probe the space, time, and magnitude signatures of avalanching behavior using a network of temporally-directed links subject to a spatial distance criterion between events in the entire catalog. We apply this method onto three systems with avalanche-like characteristics: (i) highly controllable scaled experiments, particularly that of a slowly-driven pile of granular material in a quasi-two-dimensional setup with open edges; (ii) the sandpile, a numerical model of nearest-neighbor interactions in a grid; and (iii) substantially complete empirical data on earthquakes from southern California. Apart from the recovery of the fat-tailed statistics of event sizes, we recover similar power-laws in the spatial and temporal aspects of the networks of these representative systems, hinting at possible common underlying generative mechanisms governing them. By consolidating the results from experiments, numerical models, and empirical data, we can gain a better understanding of these highly nonlinear processes in nature.
Keywords: Granular materials; Sandpile model; Earthquakes; Scaling phenomena in complex systems; Avalanches; Self-organization of complex systems (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077919304710
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:130:y:2020:i:c:s0960077919304710
DOI: 10.1016/j.chaos.2019.109519
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().