Numerical analysis of diffusive susceptible-infected-recovered epidemic model in three space dimension
Nauman Ahmed,
Mubasher Ali,
Dumitru Baleanu,
Muhammad Rafiq and
Muhammad Aziz ur Rehman
Chaos, Solitons & Fractals, 2020, vol. 132, issue C
Abstract:
In this article, numerical solution of three dimensional susceptible-infected-recovered (SIR) reaction-diffusion epidemic system is furnished with a time efficient operator splitting nonstandard finite difference (OS-NSFD) method. We perform the comparison of proposed OS-NSFD method with popular forward Euler explicit finite difference (FD) method and time efficient backward Euler operator splitting finite difference (OS-FD) implicit method. The proposed OS-NSFD method is implicit in nature but computationally efficient as compared to forward Euler explicit (FD) scheme. The numerical stability and bifurcation value of transmission coefficient for SIR reaction-diffusion epidemic system is also investigated with the aid of Routh–Hurwitz method. At the end, we give two numerical experiments and simulation. In first experiment, all the numerical schemes are compared with the help of simulations. In second experiment we show the simulations of proposed NSFD technique at different values of parameters. Also we discuss the importance of transmission rate to control the spread of disease with the help of simulations.
Keywords: Operator splitting methods; Nonstandard finite difference schemes; Positivity; SIR epidemic model; Numerical stability; Bifurcation value (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077919304862
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:132:y:2020:i:c:s0960077919304862
DOI: 10.1016/j.chaos.2019.109535
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().