EconPapers    
Economics at your fingertips  
 

Some properties of small perturbations against a stationary solution of the nonlinear Schrödinger equation

Mikhail N. Smolyakov

Chaos, Solitons & Fractals, 2020, vol. 132, issue C

Abstract: In this paper, classical small perturbations against a stationary solution of the nonlinear Schrödinger equation with the general form of nonlinearity are examined. It is shown that in order to obtain correct (in particular, conserved over time) nonzero expressions for the basic integrals of motion of a perturbation even in the quadratic order in the expansion parameter, it is necessary to consider nonlinear equations of motion for the perturbations. It is also shown that, despite the nonlinearity of the perturbations, the additivity property is valid for the integrals of motion of different nonlinear modes forming the perturbation (at least up to the second order in the expansion parameter).

Keywords: Nonlinear Schrödinger equation; Gross-Pitaevskii equation; Nonlinear perturbations; Stationary solutions; Solitons (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077919305272
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:132:y:2020:i:c:s0960077919305272

DOI: 10.1016/j.chaos.2019.109570

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:132:y:2020:i:c:s0960077919305272