Dynamic scaling, data-collapse and self-similarity in mediation-driven attachment networks
Debasish Sarker,
Liana Islam and
Md. Kamrul Hassan
Chaos, Solitons & Fractals, 2020, vol. 132, issue C
Abstract:
Recently, we have shown that if the ith node of the Barabási-Albert (BA) network is characterized by the generalized degree qi(t)=ki(t)tiβ/m, where ki(t) ~ tβ and m are its degree at current time t and at birth time ti, then the corresponding distribution function F(q, t) exhibits dynamic scaling. Applying the same idea to our recently proposed mediation-driven attachment (MDA) network, we find that it too exhibits dynamic scaling but, unlike the BA model where β=1/2, the exponent β of the MDA model assumes a spectrum of value 1/2 ≤ β ≤ 1. Moreover, we find that the scaling curves for small m are significantly different from those of the larger m and the same is true for the BA networks albeit in a lesser extent. We use the idea of the distribution of inverse harmonic mean (IHM) of the neighbours of each node and show that the number of data points that follow the power-law degree distribution increases as the skewness of the IHM distribution decreases. Finally, we show that both MDA and BA models become almost identical for large m.
Keywords: Dynamic Scaling; Power-law; Mediation-Driven Attachment; Complex Networks; Scale-free Networks (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007791930548X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:132:y:2020:i:c:s096007791930548x
DOI: 10.1016/j.chaos.2019.109591
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().