Inferring the connectivity of coupled oscillators and anticipating their transition to synchrony through lag-time analysis
Inmaculada Leyva and
Cristina Masoller
Chaos, Solitons & Fractals, 2020, vol. 133, issue C
Abstract:
The synchronization phenomenon is ubiquitous in nature. In ensembles of coupled oscillators, explosive synchronization is a particular type of transition to phase synchrony that is first-order as the coupling strength increases. Explosive sychronization has been observed in several natural systems, and recent evidence suggests that it might also occur in the brain. A natural system to study this phenomenon is the Kuramoto model that describes an ensemble of coupled phase oscillators. Here we calculate bi-variate similarity measures (the cross-correlation, ρij, and the phase locking value, PLVij) between the phases, ϕi(t) and ϕj(t), of pairs of oscillators and determine the lag time between them as the time-shift, τij, which gives maximum similarity (i.e., the maximum of ρij(τ) or PLVij(τ)). We find that, as the transition to synchrony is approached, changes in the distribution of lag times provide an earlier warning of the synchronization transition (either gradual or explosive). The analysis of experimental data, recorded from Rossler-like electronic chaotic oscillators, suggests that these findings are not limited to phase oscillators, as the lag times display qualitatively similar behavior with increasing coupling strength, as in the Kuramoto oscillators. We also analyze the statistical relationship between the lag times between pairs of oscillators and the existence of a direct connection between them. We find that depending on the strength of the coupling, the lags can be informative of the network connectivity.
Keywords: Synchronization; Kuramoto model; Rossler system; Networks (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920300035
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:133:y:2020:i:c:s0960077920300035
DOI: 10.1016/j.chaos.2020.109604
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().