Adaptive chaotic maps and their application to pseudo-random numbers generation
Aleksandra V. Tutueva,
Erivelton G. Nepomuceno,
Artur I. Karimov,
Valery S. Andreev and
Denis N. Butusov
Chaos, Solitons & Fractals, 2020, vol. 133, issue C
Abstract:
Chaos-based stream ciphers form a prospective class of data encryption techniques. Usually, in chaos-based encryption schemes, the pseudo-random generators based on chaotic maps are used as a source of randomness. Despite the variety of proposed algorithms, nearly all of them possess many shortcomings. While sequences generated from single-parameter chaotic maps can be easily compromised using the phase space reconstruction method, the employment of multi-parametric maps requires a thorough analysis of the parameter space to establish the areas of chaotic behavior. This complicates the determination of the possible keys for the encryption scheme. Another problem is the degradation of chaotic dynamics in the implementation of the digital chaos generator with finite precision. To avoid the appearance of quasi-chaotic regimes, additional perturbations are usually introduced into the chaotic maps, making the generation scheme more complex and influencing the oscillations regime. In this study, we propose a novel technique utilizing the chaotic maps with adaptive symmetry to create chaos-based encryption schemes with larger parameter space. We compare pseudo-random generators based on the traditional Zaslavsky map and the new adaptive Zaslavsky web map through multi-parametric bifurcation analysis and investigate the parameter spaces of the maps. We explicitly show that pseudo-random sequences generated by the adaptive Zaslavsky map are random, have a weak correlation and possess a larger parameter space. We also present the technique of increasing the period of the chaotic sequence based on the variability of the symmetry coefficient. The speed analysis shows that the proposed encryption algorithm possesses a high encryption speed, being compatible with the best solutions in a field. The obtained results can improve the chaos-based cryptography and inspire further studies of chaotic maps as well as the synthesis of novel discrete models with desirable statistical properties.
Keywords: Chaotic discrete map; Zaslavsky web map; Adaptive symmetry; Chaos-based cryptography; Pseudo-random generator (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792030014X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:133:y:2020:i:c:s096007792030014x
DOI: 10.1016/j.chaos.2020.109615
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().