Computing the density function of complex models with randomness by using polynomial expansions and the RVT technique. Application to the SIR epidemic model
Julia Calatayud,
Juan Carlos Cortés and
Marc Jornet
Chaos, Solitons & Fractals, 2020, vol. 133, issue C
Abstract:
This paper concerns the computation of the probability density function of the stochastic solution to general complex systems with uncertainties formulated via random differential equations. In the existing literature, the uncertainty quantification for random differential equations is based on the approximation of statistical moments by simulation or spectral methods, or on the computation of the exact density function via the random variable transformation (RVT) method when a closed-form solution is available. However, the problem of approximating the density function in a general setting has not been published yet. In this paper, we propose a hybrid method based on stochastic polynomial expansions, the RVT technique, and multidimensional integration schemes, to obtain accurate approximations to the solution density function. A problem-independent algorithm is proposed. The algorithm is tested on the SIR (susceptible-infected-recovered) epidemiological model, showing significant improvements compared to the previous literature.
Keywords: Complex model with uncertainties; Random differential equation; Probability density function; Stochastic polynomial expansion; RVT technique; SIR epidemic model (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920300382
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:133:y:2020:i:c:s0960077920300382
DOI: 10.1016/j.chaos.2020.109639
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().