Approximate solution for a 2-D fractional differential equation with discrete random noise
Nguyen Huy Tuan,
Dumitru Baleanu,
Tran Ngoc Thach,
O’Regan, Donal and
Nguyen Huu Can
Chaos, Solitons & Fractals, 2020, vol. 133, issue C
Abstract:
We study a boundary value problem for a 2-D fractional differential equation (FDE) with random noise. This problem is not well-posed. Hence, we use truncated regularization method to establish regularized solutions for the such problem. Finally, the convergence rate of this approximate solution and a numerical example are investigated.
Keywords: Fractional differential equation; Regularization; Random noise (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920300497
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:133:y:2020:i:c:s0960077920300497
DOI: 10.1016/j.chaos.2020.109650
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().