A symbiosis between cellular automata and genetic algorithms
Umberto Cerruti,
Simone Dutto and
Nadir Murru
Chaos, Solitons & Fractals, 2020, vol. 134, issue C
Abstract:
Cellular automata are systems which use a rule to describe the evolution of a population in a discrete lattice, while genetic algorithms are procedures designed to find solutions to optimization problems inspired by the process of natural selection. In this paper, we introduce an original implementation of a cellular automaton whose rules use a fitness function to select for each cell the best mate to reproduce and a crossover operator to determine the resulting offspring. This new system, with a proper definition, can be both a cellular automaton and a genetic algorithm. We show that in our system the Conway’s Game of Life can be easily implemented and, consequently, it is capable of universal computing. Moreover two generalizations of the Game of Life are created and also implemented with it. Finally, we use our system for studying and implementing the prisoner’s dilemma and rock-paper-scissors games, showing very interesting behaviors and configurations (e.g., gliders) inside these games.
Keywords: Cellular automata; Genetic algorithms; Game of life; Prisoner’s dilemma (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920301211
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:134:y:2020:i:c:s0960077920301211
DOI: 10.1016/j.chaos.2020.109719
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().