A fractional model for estimating the hole geometry in the laser drilling process of thin metal sheets
Waheed K. Zahra,
Mahmoud Abdel-Aty and
Diaa Abidou
Chaos, Solitons & Fractals, 2020, vol. 136, issue C
Abstract:
Fractional calculus has been increasingly attracting interest in various fields of science and engineering where the problems are governed by differential and integral equations. This shift towards adopting such an approach approves its validity since it has shown that different engineering problems could be better represented by fractional than integer order calculus. Therefore, in this work, fractional calculus is employed in order to simulate a previously addressed problem of metal laser drilling process using meshless local Petrov–Galerkin (MLPG). Both approximations of shifted and weighted shifted Grünwald–Letnikov are used and compared with each other in terms of the expected hole geometry and its closeness to the experimental data. Moreover, the fractional order derivative is considered to be both constant and variable in order to show its impact on the expected outcome of the hole profile. Specifically speaking, for this problem of fixed laser absorptivity, it is shown that the fractional derivative order needs to be variable in order to make the numerical results best match the experimental data in both stages of transient and steady-state.
Keywords: Fractional derivative; Meshless local Petrov–Galerkin; Numerical simulation; Laser drilling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920302435
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:136:y:2020:i:c:s0960077920302435
DOI: 10.1016/j.chaos.2020.109843
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().