EconPapers    
Economics at your fingertips  
 

Theoretical design and circuit implementation of novel digital chaotic systems via hybrid control

Jun Zheng, Hanping Hu, Hao Ming and Xiaohui Liu

Chaos, Solitons & Fractals, 2020, vol. 138, issue C

Abstract: Chaos is a paradigm shift of all science, which provides a collection of concepts and methods to analyze a novel behavior that can arise in a wide range of disciplines. However, most of researches in simulations and applications of chaos are performed on finite-state automata, which inevitably causes chaos to collapse. Here we present a hybrid model by controlling digital system with continuous chaotic system to construct chaos on finite-state automata. A new concept and method named Generalized Symbolic Dynamics (GSD) is proposed to target the hybrid system. Based on GSD, a rigorous proof is given that the controlled digital system is chaotic in the sense of Devaney. Moreover, analog-digital hybrid circuit is built for the digital chaotic system. Finally, a simple pseudorandom number generator is designed as a proof of concept. Results show that the proposed generator has good performance for cryptography. Such digital chaotic systems, which are not subject to degradation, could pave the way for widespread applications of chaos.

Keywords: Digital chaotic system; Anti-control; Generalized symbolic dynamics (GSD); Integrated circuit; Pseudorandom number generator (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920302630
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920302630

DOI: 10.1016/j.chaos.2020.109863

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920302630