How to reduce epidemic peaks keeping under control the time-span of the epidemic
Mariano Cadoni
Chaos, Solitons & Fractals, 2020, vol. 138, issue C
Abstract:
One of the main challenges of the measures against the COVID-19 epidemic is to reduce the amplitude of the epidemic peak without increasing without control its timescale. We investigate this problem using the SIR model for the epidemic dynamics, for which reduction of the epidemic peak IP can be achieved only at the price of increasing the time tP of its occurrence and its entire time-span tE. By means of a time reparametrization we linearize the equations for the SIR dynamics. This allows us to solve exactly the dynamics in the time domain and to derive the scaling behaviour of the size, the timescale and the speed of the epidemics, by reducing the infection rate α and by increasing the removal rate β by a factor of λ. We show that for a given value of the size (IP, the total, IE and average I^P number of infected), its occurrence time tP and entire time-span tE can be reduced by a factor 1/λ if the reduction of I is achieved by increasing the removal rate instead of reducing the infection rate. Thus, epidemic containment measures based on tracing, early detection followed by prompt isolation of infected individuals are more efficient than those based on social distancing. We apply our results to the COVID-19 epidemic in Northern Italy. We show that the peak time tP and the entire time span tE could have been reduced by a factor 0.9 ≤ 1/λ ≤ 0.34 with containment measures focused on increasing β instead of reducing α.
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920303398
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303398
DOI: 10.1016/j.chaos.2020.109940
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().