Time Series Analysis and Forecast of the COVID-19 Pandemic in India using Genetic Programming
Rohit Salgotra,
Mostafa Gandomi and
Amir H Gandomi
Chaos, Solitons & Fractals, 2020, vol. 138, issue C
Abstract:
COVID-19 declared as a global pandemic by WHO, has emerged as the most aggressive disease, impacting more than 90% countries of the world. The virus started from a single human being in China, is now increasing globally at a rate of 3% to 5% daily and has become a never ending process. Some studies even predict that the virus will stay with us forever. India being the second most populous country of the world, is also not saved, and the virus is spreading as a community level transmitter. Therefore, it become really important to analyse the possible impact of COVID-19 in India and forecast how it will behave in the days to come. In present work, prediction models based on genetic programming (GP) have been developed for confirmed cases (CC) and death cases (DC) across three most affected states namely Maharashtra, Gujarat and Delhi as well as whole India. The proposed prediction models are presented using explicit formula, and impotence of prediction variables are studied. Here, statistical parameters and metrics have been used for evaluated and validate the evolved models. From the results, it has been found that the proposed GEP-based models use simple linkage functions and are highly reliable for time series prediction of COVID-19 cases in India.
Keywords: COVID-19; Coronavirus; SARS-CoV-2; Time series forecasting; Genetic programming; India (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920303441
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303441
DOI: 10.1016/j.chaos.2020.109945
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().