EconPapers    
Economics at your fingertips  
 

A novel mathematics model of covid-19 with fractional derivative. Stability and numerical analysis

Badr Saad T. Alkahtani and Sara Salem Alzaid

Chaos, Solitons & Fractals, 2020, vol. 138, issue C

Abstract: a mathematical model depicting the spread of covid-19 epidemic and implementation of population covid-19 intervention in Italy. The model has 8 components leading to system of 8 ordinary differential equations. In this paper, we investigate the model using the concept of fractional differential operator. A numerical method based on the Lagrange polynomial was used to solve the system equations depicting the spread of COVID-19. A detailed investigation of stability including reproductive number using the next generation matrix, and the Lyapunov were presented in detail. Numerical simulations are depicted for various fractional orders.

Keywords: Covid-19 model; Non-local operators; Reproductivity numbers; Lagrange polynomial (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920304045
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920304045

DOI: 10.1016/j.chaos.2020.110006

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920304045