Evaluation and prediction of COVID-19 in India: A case study of worst hit states
Danish Rafiq,
Suhail Ahmad Suhail and
Mohammad Abid Bazaz
Chaos, Solitons & Fractals, 2020, vol. 139, issue C
Abstract:
In this manuscript, system modeling and identification techniques are applied in developing a prognostic yet deterministic model to forecast the spread of COVID-19 in India. The model is verified with the historical data and a forecast of the spread for 30-days is presented in the 10 most affected states of India. The major results suggest that our model can very well capture the disease variations with high accuracy. The results also show a steep rise in the total cumulative cases and deaths in the coming weeks.
Keywords: SARS-CoV-2; Pandemic; System identification (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920304124
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304124
DOI: 10.1016/j.chaos.2020.110014
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().