Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India
Parul Arora,
Himanshu Kumar and
Bijaya Ketan Panigrahi
Chaos, Solitons & Fractals, 2020, vol. 139, issue C
Abstract:
In this paper, Deep Learning-based models are used for predicting the number of novel coronavirus (COVID-19) positive reported cases for 32 states and union territories of India. Recurrent neural network (RNN) based long-short term memory (LSTM) variants such as Deep LSTM, Convolutional LSTM and Bi-directional LSTM are applied on Indian dataset to predict the number of positive cases. LSTM model with minimum error is chosen for predicting daily and weekly cases. It is observed that the proposed method yields high accuracy for short term prediction with error less than 3% for daily predictions and less than 8% for weekly predictions. Indian states are categorised into different zones based on the spread of positive cases and daily growth rate for easy identification of novel coronavirus hot-spots. Preventive measures to reduce the spread in respective zones are also suggested. A website is created where the state-wise predictions are updated using the proposed model for authorities,researchers and planners. This study can be applied by other countries for predicting COVID-19 cases at the state or national level.
Keywords: COVID-19; Prediction; Deep learning; RNN; LSTM (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792030415X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:139:y:2020:i:c:s096007792030415x
DOI: 10.1016/j.chaos.2020.110017
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().