Influence of isolation measures for patients with mild symptoms on the spread of COVID-19
Qiuhui Pan,
Ting Gao and
Mingfeng He
Chaos, Solitons & Fractals, 2020, vol. 139, issue C
Abstract:
During the transmission of COVID-19, the hospital isolation of patients with mild symptoms has been a concern. In this paper, we use a differential equation model to describe the propagation of COVID-19, and discuss the effects of intensity of hospital isolation and moment of taking measures on development of the epidemic. The results show that isolation measures can significantly reduce the epidemic final size and the number of dead, and the greater the intensity of measures, the better, but duration of the epidemic will be prolonged. Whenever isolation measures are taken, the epidemic final size and the number of dead can be reduced. In early stage of the epidemic, taking measures one day later has little impact, but after a certain period, if taking measures one day later, the epidemic final size and the number of dead increase sharply. Taking measures as early as possible makes the maximum number of patients appear later, which is conducive to expanding medical bed resources and reducing the pressure on medical resource demand. As long as possible, high-intensity isolation measures should be taken in time for patients with mild symptoms.
Keywords: Covid-19; Differential equation model; The reproduction number; Patients with mild symptoms; Isolation measure (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920304203
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304203
DOI: 10.1016/j.chaos.2020.110022
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().