A new modelling of the COVID 19 pandemic
Vladislav Soukhovolsky,
Anton Kovalev,
Anne Pitt and
Boris Kessel
Chaos, Solitons & Fractals, 2020, vol. 139, issue C
Abstract:
А model of coronavirus incidence is proposed. Process of disease development is represented as analogue of first- and second order phase transition in physical systems. The model is very simple in terms of the data necessary for the calculations. To verify the proposed model, only data on the current incidence rate are required. However, the determination coefficient of model R2 is very high and exceeds 0.95 for most countries. The model permits the accurate prediction of the pandemics dynamics at intervals of up to 10 days. The ADL(autoregressive distributed lag)-model was introduced in addition to the phase transition model to describe the development of the disease at the exponential phase.The ADL-model allows describing nonmonotonic changes in relative infection over the time, and providing to governments and health care decision makers the possibility to predict the outcomes of their decisions on public health.
Keywords: epidemics; COVID-19; infection disease; modelling; mathematics model (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920304379
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304379
DOI: 10.1016/j.chaos.2020.110039
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().