EconPapers    
Economics at your fingertips  
 

A simple numerical method for pricing American power put options

Jung-Kyung Lee

Chaos, Solitons & Fractals, 2020, vol. 139, issue C

Abstract: In this paper, we present numerical methods to determine the optimal exercise boundary in case of an American power put option with non-dividend yields. The payoff of a power option is typified by its underlying share price raised to a constant power. The nonlinear payoffs of power options offer considerable flexibility to investors and can be applied in various applications. Herein, we exploit a transformed function to obtain the optimal exercise boundary of the American power put option. Employing it, we can easily determine the optimal exercise boundary. After determining the optimal exercise boundary, we calculate the American power put option values using the finite difference method. Generally, the optimal exercise boundary may not be observed at the grid points. Therefore, the interpolation method is used to determine the value of the American power put option. Furthermore, we present several numerical results obtained by comparing the proposed method and the existing methods.

Keywords: American power put option; Optimal exercise boundary; Transformed function; Cubic spline interpolation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920306500
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920306500

DOI: 10.1016/j.chaos.2020.110254

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920306500