Comparison of deep learning approaches to predict COVID-19 infection
Talha Burak Alakus and
Ibrahim Turkoglu
Chaos, Solitons & Fractals, 2020, vol. 140, issue C
Abstract:
The SARS-CoV2 virus, which causes COVID-19 (coronavirus disease) has become a pandemic and has expanded all over the world. Because of increasing number of cases day by day, it takes time to interpret the laboratory findings thus the limitations in terms of both treatment and findings are emerged. Due to such limitations, the need for clinical decisions making system with predictive algorithms has arisen. Predictive algorithms could potentially ease the strain on healthcare systems by identifying the diseases. In this study, we perform clinical predictive models that estimate, using deep learning and laboratory data, which patients are likely to receive a COVID-19 disease. To evaluate the predictive performance of our models, precision, F1-score, recall, AUC, and accuracy scores calculated. Models were tested with 18 laboratory findings from 600 patients and validated with 10 fold cross-validation and train-test split approaches. The experimental results indicate that our predictive models identify patients that have COVID-19 disease at an accuracy of 86.66%, F1-score of 91.89%, precision of 86.75%, recall of 99.42%, and AUC of 62.50%. It is observed that predictive models trained on laboratory findings could be used to predict COVID-19 infection, and can be helpful for medical experts to prioritize the resources correctly. Our models (available at (https://github.com/burakalakuss/COVID-19-Clinical)) can be employed to assists medical experts in validating their initial laboratory findings, and can also be used for clinical prediction studies.
Keywords: SARS-CoV2; COVID-19; Coronavirus; Deep learning; Artificial intelligence (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920305178
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305178
DOI: 10.1016/j.chaos.2020.110120
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().