EconPapers    
Economics at your fingertips  
 

Stability and direction of Hopf bifurcations of a cyclical growth model with two-time delays and one-delay dependent coefficients

Luigi De Cesare and Mario Sportelli

Chaos, Solitons & Fractals, 2020, vol. 140, issue C

Abstract: This paper deals with the impact of two discrete-time delays on the basic Goodwin growth cycle model. The former concerns the existence of a finite time delay for building capital goods as suggested by Kalecki. The latter pertains to the wage lag hypothesis. This is because, taking the current change of the employment rate into account, workers and capitalists bargain new wage periodically. There are no examples in the literature on the Goodwin model of the use of both those lags in order to explore the GDP dynamics. From the analytical point-of-view, what we obtain is a delayed differential equation system with discrete-time delays and delay-dependent coefficients depending only on one of the time delays. Having chosen the time delays as bifurcation parameters, we study the stability-switching properties of the transcendental characteristic equation resulting from the stability analysis and the direction of the Hopf bifurcations. Although the system with no lag displays a stable focus, the introduction of the two lags preserves the stable solution only for particular combinations of parameters and length of the lags. In any other case, instability prevails and regular cycles or chaotic fluctuations emerge. Finally, we provide the analytical results with the necessary economic interpretations.

Keywords: DDEs; Hopf bifurcation; Growth cycle; Limit cycle (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792030521X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:140:y:2020:i:c:s096007792030521x

DOI: 10.1016/j.chaos.2020.110125

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s096007792030521x