EconPapers    
Economics at your fingertips  
 

Riemann Liouville fractional integral of hidden variable fractal interpolation function

Mi-Gyong Ri and Chol-Hui Yun

Chaos, Solitons & Fractals, 2020, vol. 140, issue C

Abstract: In this paper, we study Riemann Liouville fractional integral of hidden variable fractal interpolation function (HVFIF) constructed by functions whose Lipschitz exponents are in (0, 1]. Firstly, we present a construction of HVFIF using functions of which Lipschitz exponents are in (0, 1], so that the Riemann Liouville fractional integral of the HVFIF becomes a fractal interpolation function, and give an example where Lipschitz exponents of functions of IFS are in (0, 1]. Secondly, we prove that the Riemann Liouville fractional integral is also a HVFIF with function vertical scaling factors defined newly. Finally, we give the graphs of 0.8- and 0.2-order fractional integrals of the HVFIFs constructed in the above example.

Keywords: Fractional integral; Hidden variable fractal interpolation function; Function contractivity factor; Fractal interpolation function; Iterated function system (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920305221
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305221

DOI: 10.1016/j.chaos.2020.110126

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305221