EconPapers    
Economics at your fingertips  
 

Reservoir computing based on quenched chaos

Jaesung Choi and Pilwon Kim

Chaos, Solitons & Fractals, 2020, vol. 140, issue C

Abstract: Reservoir computing (RC) is a brain-inspired computing framework that employs a transient dynamical system whose reaction to an input signal is transformed to a target output. One of the central problems in RC is to find a reliable reservoir with a large criticality, since computing performance of a reservoir is maximized near the phase transition. In this work, we propose a continuous reservoir that utilizes transient dynamics of coupled chaotic oscillators in a critical regime where sudden amplitude death occurs. This “explosive death” not only brings the system a large criticality which provides a variety of orbits for computing, but also stabilizes them which otherwise diverge soon in chaotic units. The proposed framework shows better results in tasks for signal reconstructions than RC based on explosive synchronization of regular phase oscillators. We also show that the information capacity of the reservoirs can be used as a predictive measure for computational capability of a reservoir at a critical point.

Keywords: Reservoir computing; Quenched chaos; Chaos computing (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920305270
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305270

DOI: 10.1016/j.chaos.2020.110131

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305270