EconPapers    
Economics at your fingertips  
 

Fractional order controllers increase the robustness of closed-loop deep brain stimulation systems

Antonio Coronel-Escamilla, Jose Francisco Gomez-Aguilar, Ivanka Stamova and Fidel Santamaria

Chaos, Solitons & Fractals, 2020, vol. 140, issue C

Abstract: We studied the effects of using fractional order proportional, integral, and derivative (PID) controllers in a closed-loop mathematical model of deep brain stimulation. The objective of the controller was to dampen oscillations from a neural network model of Parkinson's disease. We varied intrinsic parameters, such as the gain of the controller, and extrinsic variables, such as the excitability of the network. We found that in most cases, fractional order components increased the robustness of the model multi-fold to changes in the gains of the controller. Similarly, the controller could be set to a fixed set of gains and remain stable to a much larger range, than for the classical PID case, of changes in synaptic weights that otherwise would cause oscillatory activity. The increase in robustness is a consequence of the properties of fractional order derivatives that provide an intrinsic memory trace of past activity, which works as a negative feedback system. Fractional order PID controllers could provide a platform to develop stand-alone closed-loop deep brain stimulation systems.

Keywords: Control theory; Fractional order calculus; Basal ganglia; Motor disorders; Lyapunov-stability (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920305452
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305452

DOI: 10.1016/j.chaos.2020.110149

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305452