EconPapers    
Economics at your fingertips  
 

Estimating the parameters of susceptible-infected-recovered model of COVID-19 cases in India during lockdown periods

Dilip Kumar Bagal, Arati Rath, Abhishek Barua and Dulu Patnaik

Chaos, Solitons & Fractals, 2020, vol. 140, issue C

Abstract: Owing to the pandemic scenario of COVID-19 disease cases all over the world, the outbreak prediction has become extremely complex for the emerging scientific research. Several epidemiological mathematical models of spread are increasing daily to forecast the predictions appropriately. In this study, the classical susceptible-infected-recovered (SIR) modeling approach was employed to study the different parameters of this model for India. This approach was analyzed by considering different governmental lockdown measures in India. Some assumptions were considered to fit the model in the Python simulation for each lockdown scenario. The predicted parameters of the SIR model exhibited some improvement in each case of lockdown in India. In addition, the outcome results indicated that extreme interventions should be performed to tackle this type of pandemic situation in the near future.

Keywords: COVID-19; India; Lockdown; Python; SIR Model (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920305506
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305506

DOI: 10.1016/j.chaos.2020.110154

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305506